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Finite duster partition functions for the Bvector model 

Received 12 January 1976 

Abstract. Systematic methods are developed for calculating the partition functions of star 
topologies in the D-vector model. A particularly simple technique (ladder transformation) 
is proposed for topologies containing a 2-cycle (ladder topologies), and these constitute 
numerically the majority of star topologies. The fewer non-ladder topologies need indi- 
vidual attention and three methods are suggested: (i) making a selected bond infinite, (U) 
using direct averages, (iii) considering the behaviour as I) + a. By suitable renormalition 
of the interaction it is shown that as D + 0 the self-avoiding walk model results (as has been 
demonstrated previously by other methods). 

A pioneering investigation of the classical Heisenberg model was published by Joyce in 
1967. In it he calculated the eigenvalues and eigenfunctions of the integral equation 
which characterizes the one-dimensional chain, and used them to derive the partition 
functions of finite clusters of spins. He established-the important result that the 
partition function of any finite cluster was determined basically by its topology, i.e. by 
the structure and position of vertices of degree three or more (for a general introduction 
to graph theoretical terminology see e.g. Domb 1974a). The insertion of vertices of 
degree two into the cluster could then be dealt with in an elementary manner. Joyce 
also showed that the partition function for a cluster with articulation points is equal to 
the product of the star clusters obtained by cutting the corresponding graph at all its 
igticulation points. Thus the partition functions of all finite clusters are determined by 
the partition functions of star clusters with different topologies, and Joyce showed how 
these could be determined for topologies of cyclomatic number c(G) C4. 

The method used by Joyce was to expand the exponential factor in the integral 
representing the partition function in terms of the eigenfunctions and eigenvalues of the 
integral equation characterizing the one-dimensional chain. Because of the spherical 
symmetry of the Hamiltonian these eigenfunctions involve spherical harmonia, and the 
multiple integrals which arise with products of spherical harmonics for the various star 
topologies can be expressed in terms of the Wigner 3- j  and 6-j symbols. 

The star cluster partition functions derived by this method were used by Joyce and 
Bowers (1966) to calculate high tenperature series expansions for the model for 
various crystal lattices. Independent calculations by alternative methods were under- 
taken by Stanley and Kaplan (1966) and Wood and Rushbrooke (1966) and the method 
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of Stanley and Kaplan was generalized by Stanley (1968b) to the case of interacting 
isotropic spins in D dimensions (the D-vector model, for a general review see Stanley 
1974). However, despite the efforts of these groups of investigators, the number of 
terms of high temperature expansions available for the D-vector model (9 or 10) is 
appreciably less than for the Ishg model (more than 15, see Domb 1974b, McKenzie 
1975), and estimates of critical exponents are therefore far less reliable. For the Ishg 
model the finite cluster method has been used very effectively for high temperatwe 
expansions, and substantial data on star lattice constants have been assembled, ~t 
would be advantageous if the data could be put to effective use for the D-vector model. 

The theory described in the first two paragraphs above for the classical Heisenberg 
model generalizes immediately to the D-vector model. But its practical implementa- 
tion for the calculation of star cluster partition functions would require formulae 
analogous to the 3-j and 6-j symbols for D-dimensional hyperspherical harmonia, a d  
these are not readily available. Also, the method cannot be extended to topologies with 
c(G) > 4 without a great increase in complication. 

The present paper therefore formulates an alternative method of calculating st= 
cluster partition functions by systematically building up graphs with cyclomatic number 
c from those with cyclomatic number (c-1). The coefficients of the products of 
eigenfunctions in these partition functions are not expressed in closed form for all 
orders, as in Joyce’s treatment, but are derived as rational functions of D. The principal 
aim of the investigation is to extend high temperature series expansions for various 
crystal lattices, but we think that the partition functions of the clusters and their 
dependence on D have an intrinsic interest of their own. Particular attention will be 
focused on the cases D + 0 and D + 00 with a suitably renormalized interaction. In the 
former case the only surviving graphs are polygons (as first indicated by de Gennes 
1972). In the latter case we shall obtain a limiting function which for an infinite lattice is 
identical with the spherical model; however, the two models are no longer equivalent 
for clusters’of finite size. 

Preliminary steps in the direction of the present approach were described in a 
previous publication (Domb 1972). We there differentiated between ladder and 
non-ladder topologies (see later 5 3 for further details) and pointed out that the former 
can be dealt with simply and automatically by a suitable linear transformation. The 
latter need individual attention but are less numerous, and the derivation of twelve 
terms in the high temperature series expansion of the partition functions for the 
face-centred cubic (FCC) lattice requires only six non-ladder topologies. We shall derive 
an explicit form for the ‘ladder transformation’, and describe a number of different 
methods of dealing with non-ladder topologies which should be sufficient to cover my 
of practical interest. We shall adopt the notation o f  Stanley in which D represents the 
spin dimension and d the space dimension (in OUT previous publication d was used for 
spin dimension). 

2. Structure of partition functions of finite dusters 

Following Joyce we consider star topologies with different interactions along the 
different bonds. Typical examples are the (Y and p topologies shown in figure 1. 

The eigenvalues of the D-vector model in one dimension are (Stanley 1969) 
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Figure 1. (a)  a topology; (b) B topology. Each bond has a ditTerent interaction. 

where K = J / k T ,  and &(IC) is the Bessel function of order v. The degeneracies are 

(D + 2 ) ( 0  - 1) ( D  +4)D(D - 1) 
2! 3! 3 9 

(D+2r-2)(D+r-3)(D+r-4) .  . . (D-1) 
l!  

,. . .. ... 

Hence the partition function for a polygon with n bonds is given by (Bowers 1969, Liu 
and Joseph 1971) 

(D+2r-2)(D+r-3) .  . . (D-1) . . .  A;+. . .. (D+2)(D- Oh,.+ Z(p,, K )  = h;+Dh;+ 
2!  r !  

(3) 

Z(C,+~; K)=A:. (4) 

For a linear chain with n bonds the partition function has the simpler form 

Following the approach of Joyce (1 9 67) the following general results can readily be 
established for the D-vector model. The partition function of a general topology G 
with r links is of the form 

( 5 )  Z(G;  K I ,  K27.. . K )  = C C(a, b,. . h ) G h a ( K l ) b ( K ~ ) .  . ht(Kr) 
a. b.. . h 

the sum being taken over all integral U,  b, . . . h including zero. The C(a, b, . . . h ) ~  are 
functions of D and our main task in this paper is to show how to calculate them. 

If any vertex of order two is inserted in a given bond (say the rth) and the interaction 
K, Is replaced by K:, K:' (figure 2), the only change in equation (5)  is to replace hh(Kr) 
by hh(K:)Ah(K:). Generalizing this result, if t vertices of order 2 are inserted and the 
interaction is unchanged hk(Kr) is replaced by hf;C'(K,). For example, the padtion 
function of a polygon having nl bonds with interaction K' and n2 bunds With interadon 
K" is given by equation (3) with the general term A: replaced by hr(K')"'Ar(K")"2. 

Fwe 2. Insertion of a 2-degree vertex. 
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n e  argument given by Joyce regarding the partition functions of articulated 
clusters also generalizes to the D-vector model, i.e. they are the products of the 
partition functions of the constituent stars. Hence, if we can calculate the 
C(a, b, . . . h)G for all star topologies we can easily write down the partition function of 
any finite cluster. 

3. Ladder transformation 

We shall now consider the transformation indicated in figure 3 in which a section of a 
topology has its interaction changed from K to K*, which is then replaced by two 
branches with interactions K’ and K”. For the change from K to K”, any term A,(K) in 

Figure 3. Ladder transformation. 

the partition function is replaced by h,(K)h,(K*). We now substitute K’+K“ for K*, 
and require a relationbetween h,(K’+ K”) and h,(K‘), A,(K”). From the general theory 
of Bessel functions (Watson 1966) it is easy to show that there is a linear relation of the 
form 

A,(K’+K’’) =E d~~)/i,(K’)h,(K’’). (6) 

We shall use the standard difference relations for Bessel functions to calculate the d?. 
We write for convenience 

A, = 2”ryV + I ) K - ~ L + ~ ( K )  (v=zD-1;  1 t = 0 , 1 , 2 , .  . .>. (7) 

Differentiating, and using the difference formulae 

G=&e- i  +Ie+i) B I ~ / K = $ ( I ~ - ~  +le+i )  

we find after a little manipulation, 
2v+t ‘ t 

A: = +- v + t  h,+l). 

We now apply this formula to (6) .  Differentiating the left-hand side we obtain 

dK’ v+t  

(9) 
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Equating coefficients of Ar(K’)A,(K’3 in equations (10) and (1 l), and converting back to 
D we find that 

r 
dk-’). (12) D + t - 2  d l[s+l) = D+2rdj‘ll,,+ r + l  D+r-3  &) 

D + 2 t - 2  D +2r -4 r-l”- D + 2t - 2 
Relation ( 1 2 )  enables us to calculate dr’) from d;) and dt-”. We start with t = 0 

for which the coefficients can most easily be obtained by applying the transformation to 
a pointpair (figure 4). We know the resultingpartition functions from equation (3), and 
we deduce that 

Ao(K’+ K”) = d‘,o’A,(K’)Ar(Kf’), 

d‘0) = ( D  +2r - 2)(D +r -3)! 
(D - 2)! r !  W 

All d‘,O’ with r # s are zero. 

Fignre 4. Ladder transformation applied to a point pair, yielding a polygon. 

Putting t = 0 in equation (12) the last term on the right-hand side does not enter, and 
we find that 

all other dlf’ being zero. 
When we put t = 1, there are two different types of non-zero term: 

D(D + r - 3)! (2) - ($2) = ‘-’J ( D  + 2s - 4)(D - l)!(r - 2)!’ 4.r-2- 

2 ( 0  + r - 3)! 
(D+2r)(D+2r-4)(D-l)!(r-l)! 

X [D3+3D2(r-2)+2D(r2-6r+6) -(2r--2)(2~4)d. (17) 

It Will be seen that the second is now considerably more complicated. 
We could proceed to derive general formulae for higher order t, but because of the 

increase in complication it is better to calculate these numerically for individual r, s. 
However, we note the following general property: if r 3 s 2 t the only non-zero terms 
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are those for which r+  s + t is even and t 3 r - s. This is a general form of the trim& 
condition for the 3-j symbols which are relevant in the D = 3 case (Joyce 1967). 

When D = 2 the difference relation (12) gives trouble when r = 1. However, this is a 
particularly simple case which we can deal with exactly in an elementary manner; since 

At = It(K)7 (18) 
we can use standard formulae for Bessel functions (Watson 1966) 

CO 

(Lab1 = U X N .  (19) 

d t ) =  1 r # s, J r -s l= t ;  d‘,O’=2. (20) 

I,(K’+K”) = IP(K’)I”JK’‘) 

We thus find that the only non-zero values of &) are given by 
p=-m 

It should be noted that formulae (E), (16) and (17) are correct when D =2. 
We now show how the ladder transformation can be used to derive the C(a, b, . . . h) 

for a number of topologies. The term ladder topology will be used to describe any 
topology which can be derived from a topology with lower cyclomatic number by means 
of a ladder transformation. From the list of topologies with c d 4 reproduced in figure 5 
(from Essam and Sykes 1966) we note that 8, p, y, 8, D, E, H, I, K, L, M, N, 0, P and Q 
are ladder topologies derivable from a polygon p ;  for all of these topologies the 
C(a, b, . . . h) can be calculated in terms of the d!:’. The non-ladder topologies are a, A, 
B and F ;  C, G and J are ladder topologies derivable from a. 

I G  H I 3 K L 

M N 0 P 

Figure 5. Topologies with cyclomatic number c S 4  (after Essarn and Sykes 1966). 

We first consider the 8 topology, which can be derived from the polygon (figure 6). 
We find that 

Since C(r, s, t ) e  is symmetric in (r, s, t> the triangle condition can be extended to any Pair 
of (r,  s, r). Numerical examples of this condition for small (r, s, t )  are 

(o)d(‘) (21) 
C(t; S, t ) e  =dtz rs. 

C(4, 1, l ) e  = C(5,2, l ) e  = C(6,2,2)e = 0. 
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Figure 6. B topology derived by ladder transformation fram polygon. 

Some typical values are 

c (2 , i ,  ile = D(D- 1) 

C(3,2,l)e = D2(D - 1)/2 (22) 

The E topology can be handled in the same way (figure 7), and we h d  that the 

(23) 

C(2,2,2)e=(D+2)*(O-2)(D-l)/(D+4). 

non-zero coefficients are 
C(r, s, t, r', s', t, r", s", t )E = dJp, 0 ( d  d , ,  (!I, d$Lr. 

Figure 7. E topology derived by 3 ladder transformations from polygon. 

For the S topology we find from figure 8 that 

C(r, s, r', s ' ) ~  =E C(t),dE)dSf?,. 
f 

Figore 8. 6 topology derived by 2 ladder transformations from polygon. 

If there is no value for t for which the triangle conditions on (r, s, t )  and (r', s', t )  can be 
satisfied simultaneously then C(r, s, r', s ' ) ~  is zero. For example 

C(5,1,1,l)s = C(6,2,1,l)s =O. (25) 

The Q topology involves two vertices of degree 5. It can most easily be derived by a 
ladder transformation on the 6 topology, and we find that 

0 (0  
C(r, s, r', s', T " ) ~  = E C(r, s, r: t')sds*,e = (C,),,&)dhd,~. 

t' r,r' 
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m e  coefficient is zero if no t, t’ can be found such that 

(26) 
all  satisfy the triangle conditions. The generalization to vertices of higher degree is 
straightforward. 

(rst) (tr‘t’) (t’s’r’’) 

4. Vertexfnnctions 

neral argument given in Joyce (1967), the coefficients C(l17 12 , ,  . . 
ertexfunctions over the graph. From equation (3.5) of 

Joyce’s paper we 

U in G vertex U} 

Here the Ylm(6, 4) are spherical harmonics, and the pairs of Yiam,(9, 4) with the same 
subscripts (corresponding to the two ends of a particular bond) must be complex 
conjugates. Hence, Joyce was able to evaluate the C(I1, lZ7 . . . l r ) ~  for all the topologies 
with c < 4 (figure 5 )  in terms of the Wigner 3-j, 6-j and 9-j symbols. As typical examples 
we quote the formulae for the 8 topology 

(28) 
11 12 13 

and for the (Y topology (figure 1) 

c(l1, l 2 7  1 3 7  14 , ,k ,  16)a 

These closed form formulae valid for all li are extremely useful as a general check on 
more general formulae for specific 1, which we shall derive for general D. 

A feature of equation (27) is that, at any vertex of degree 3, the vertex function is 
zero unless (ZIIZZ~) satisfy the triangle condition which is expressed for general positive 
11, Z,, l3 in the form 

11 + 12 - l3 3 0, l 2+Z3-Z13O7 13+11-12a0. (30) 

This condition is identical with the one we derived in the previous section for the 8 
topology in the D-vector-model; if it is not satisfied the integral of the product of any 
three spherical harmonics: 

(3 1) 

is zero. 
For a vertex of degree 4 one can show similarly that the integral of the produd of 

four spherical harmonics is zero unless there exists an E for which (Il l2 1) and ( l l 3  l4) 
satisfy the triangle condition (30). This is identical with the condition we derived in the 

I Ylimi(@, 4) Y l 2 m 2 ( 4  4) Yi3,,,~(07 4) d a ,  
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previous section for the S topology in the D-vector model. For a vertex of degree 5 a 

Equation (27) generalizes immediately to the D-vector model, the spherical ha- 
monies being replaced by hyperspherical harmonics (Gegenbauer polynomials, see 
ErdClyi 1953). The above relations for non-zero coefficients obtained when D = 3 are 
identical with those derived in the previous section for vertices of ladder topologies for 
general D ;  we thus have a strong indication that they are satisfied for vertices of d 
topologies in the D-vector model, i.e. that relations analogous to equation (3 1) are valid 
for hyperspherical harmonics. This result can be established quite generally, and we 
shall assume it to be the case in the remainder of this paper. 

We shall now deal specifically with D = 2 since there are a number of simplifying 
features. The circular harmonics are the functions exp(*im4), and for a vertex of 
degree 3 a non-zero term can only be obtained if one of the relations in equation (30) is 
anequality. Likewise, at a vertex of degree 4 it must be possible to find a combination of 
positive and negative signs for which 

relation analogous to equation (25) must be satisfied. . <  

I1 * 12* &f 1, (32) 
reduces to zero; the generalization to higher order vertices is straightforward. Because 
of the complex conjugate condition a function exp( +in@) at one end of a bond must be 
matched by exp(-im4) at the other end of the bond. Hence, the evaluation of 
C(ll, l2 . . . .&)G when D = 2 is an elementary combinatorial problem and is analogous to 
the determination of horizontal weights in the X-Y model (Betts 1974). As typical 

or the (Y topology, 

C(2,2; 2,2; 2,2), = 0, C(3, 1; 2,2; 1, l), =2. (33) 
A diagrammatic illustration of the last result is shown in figure 9. 

F i i  9. Configuration calculation of C(3,l; 2,2; 1, I), for D = 2. 

5. "bladder topologies 

We build up topologies successively by increasing the cyclomatic number c. For a 
non-ladder topology with this cyclomatic number, any coefficient C(h, 12, . . . l r ) ~  with 
any of the fi zero corresponds to a coefficient in a topology of cyclomatic number less 
than c and can be assumed known, Our task is to calculate the coefficients when none of 
the 1, are zero. We shall propose three different methods. 

5.1. Coalesce two vertices by allowing a chosen bond to become infinite 

We obtain a topology with the same c, but which has fewer vertices, and is therefore 
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either a ladder topology or ‘closer’ to one. Examples are shown in figure 10. Let G* be 
the topology derived from G by coalescing the two vertices on bond 1.  

IC) 

FignrelQ. Makingabondinfinitetocoalescetwovertices.(a) a+ y ; ( b ) B + F ; ( c ) F + J .  

As Kl +a we find from the asymptotic formulae for Bessel functions that 

A,(Kl)/AO(KI> + 1 (34) 
for all t. We then obtain the relation 

M 

Our aim is to choose l1 so that as few as possible of the terms on the right-hand side are 
non-zero because of violation of the triangle conditions (30). We illustrate by examples 
from the a topology 

C(2; 1 9 1 ;  1, 
=C(0,2;1, 1;1,1)a+C(2~2;1,1;1,1)a+C(4,2;1,1;1,1)a 

= C(2,1,1),+C(2,2; 1, 1; 1, l), (36) 

since the final term is zero. From this we deduce that 

C(2,2; 1 , l ;  171),=D(D-1)(D-2)/(D+2). (37) 

In an analogous manner we derive the following relations: 

C(2, 1; 2 , l ;  2, l), =D(D-l)(D-2) 
c(3, i ;2 ,2;  1, i ) , = 0 3 ( o - 1 ) / ( ~ + 2 )  (38) 

C(3,2; 2 , l ;  1,2), =D2(D-1)(D-2)/(D+4). 

The values can be checked for D = 3 from equation (29). 
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This method is very simple and direct, but it may provide only a relation between 

(39) 

Finite cluster partition functions 

unknown coefficients. For example, for the coefficient C(2,2; 2,2; 2,2), we find 

C(2; 2,2; 2,2), = C(0,2; 2,2; 2,2), + C(2,2; 2,2; 2,2), + C(4,2; 2,2; 2, 2),. 

From this we deduce that 

~ ( 2 ~ 2 ;  272; Z2)a + C(492; 2,2; 2,2)a 
= C(2,2,2), + C(2; 2,2; 2, 2)y 

To evaluate the coefficients separately we must resort to an alternative method. 

5.2. Direct averaging 

We use i, j to Iabel the vertices of any topoiogy G, (ij) denoting the bonds of G, and we 
denote by a, the component of a D-dimensional spin, Q going from 1 to D. The high 
temperature expansion of the partition function is then 

(4 1) 

We can pick out a term corresponding to any configuration, say KfK,”.  , . KF and 
calculate its average. We can then evaluate the same term from 

Z(G)=C C(Q, b , .  . . h)Oho(Ki)h(&), . . b ( K )  (42) 

and hence determine C(a, b, . . . hIG, assuming that lower order coefficients are known. 
The calculation of the average is somewhat complicated, but it is often unnecessary to 
complete it, since by merely considering its form we can gain enough information to 
evaluate C(a, b, . . . h)G. 

We first note that the term we require is given by the average of a product 

This can be visualized graphically as a bonding of G in which each bond can have one of 
D colours. For each colouring we average all the vertex configurations and multiply 
them together, and then we sum over all possible colourings. We can conveniently 
divide the averages into those corresponding to one colour (which can be chosen in D 
ways), corresponding to 2 colours (which can be chosen in D(D - 1)/2! ways), etc. 

There are a number of simplifying features as follows: 
(i) Any vertex having an odd number of bonds of a given colour has zero average. 
(ii) A 4-vertex has an average of the form A/D(D + 2), a 6-vertex has an average of 

form A/D(D +2)(D +4) and so on, no malter what is the colouring ofthe vertex. 
Only the value of A is affected by the colouring of the vertex. 
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2 2 2 2 2 2  k t  US illustrate by considering the term K1K2K3K4K5K6 for the a topology. ~~~h 
vertex is of order 6. Hence the general form of average is 

)4[a0D+alD(D-l)+. . .+a5D(D-1). . .(D-5)]. 
(D(D + 2)(0  +4) (44) 

m e n  we wish to examine the coefficients in equation (42) which contribute to this 
term we note first that 

K2 K4 
2 0  2X4D(D+2) ho(K) = 1 +-+ 

K K3 
h,(K) =-+ D '2D(D+2) 

K4 
K2  + 

*2z(K)=D(D+2) 2 0 ( 0 + 2 ) ( 0 + 4 )  

(45) 

+. . .). (I+ ""()=D(D+2). . , D(2s-2) 2(D+2s) 
K 2  K S  

Hence we find that the value of the term is 

C(2,2; 2,2; 2, 2)JD6(D +2)6+4C(2)p/(2D)3D3(D+2)3+3C(2),/(2D)2D4(D+2)4 
+6c(2,2, 2),/(20)05+ 1 / ( 2 ~ ) ~ .  (46) 

Equating equations (44) and (46) and cleaning up we find that 

~ ( 2 , 2 ; 2 , 2 ; 2 , 2 ) , + t ( 0 - 1 ) ( ~ + 2 ) ~ + ~ ( ~ - 1 ) ( ~ + 2 ) ~  

+3(0+2)'(D-2)(0- 1)/(D+4)+&D+2)6 

[a()+ Ul(D-- l)+uz(D - l)(D-2)+. . .I. - 03(0 +2)2 - 
(D  + 4)4 

(47) 

We note that the right-hand side in equation (47) begins with D3; hence the first three 
powers on the left-hand side must be zero, and if the expansion of C(2,2; 2,2; 2 , 2 ) ,  
(which we note by x for convenience) in powers of D starts with Ao+AID + A@, we 
calculate that 

Ao= -6, A1 = 11/2, A2= 13/4. (48) 

We can proceed likewise with C(4,2; 2,2; 2, 2)p (denoted by y )  to determine the first 
terms in its expansion. 

When D = 3 we find, using Joyce's formula, that 

x = - 2 X 3 X 5 3 X F ,  y = 23x 3i x 52x 7-3. 149) 

The form of equation (49) suggests assuming the general form 

(Bo + B2D2+B3D3). (D  +2)2(0 - 2)(D - 1) 
( D  + 4)3 

X =  
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From equation (48) we find that Bo = -48, B, = - 16, B2 = 6, and using equation (40) 
we then find 

x =(D+2)3(D-2)(D-1)(DZ+4D-24)/(D+4)3 
y =D2(D+2)2(D+1)(D-1)(D-2)/(D+4)3. (5 1) 

As a check we note that both x and y are zero when D = 1 or 2. Further checks can be 
obtained by calculating individual coefficients ai in equation (44), some of which are 
quite easy to obtain. A final check is provided by the third method which we now 
describe. 

5.3. Limiting form of coefficients as D + 00 

Stanley (1968a) has shown that if the interaction is renormalized, i.e. the oripjnd 
interaction J replaced by f l  where A is of order 0, and In 2 is then divided by A, a finite 
limiting solution is obtained which we shall call the infinite D limit. For an assembly of 
Nspins in the thermodynamic limitN+ CO, this limit is identical with the spherical model 
solution. For finite clusters this is not the case; nevertheless, the existence of an infinite 
D limit for finite clusters has important implications which we shall now discuss. 

Firstly, we investigate the eigenvalues in the infinite spin limit. Stanley showed that 

lim In A: = - 1 + (1 + KF2)+-ln 3 1  + (1 +K*’fi. 
A+CO A 

Renormalizing the sth eigenvalue 

A: = 2”I‘(v + l)(hK*)-”I,+,(AK*), 

A T / A ~ +  w =K*[I+(I+K*~)+] (54) 

(Y = +D - 1) (53) 

we easily find (e.g. by taking A = Y) that in the limit v + 03, 

Using Stanley’s result, if we form In Z(G) for any topology, remove the A: terms 
and obtain a series in w, then from equations (54) and (55)  all terms of order D2, 
D 3 , .  . . must disappear. This gives us useful information about the form of the higher 
coefficients once we know the lower order coefficients, and In any case can serve as a 
useful check on any evaluations. 

5.4. Examples 

5.4.1. Simple polygon 

In Z(p)-In A t  = In[l +Dw +&D +2)(0  - 1)w2+$((0+4)D(D - I ) w 3 + .  . .I (56) 
= D w + & ( D + ~ ) ( D - ~ ) w  2 -2D 1 2 2  w 

= ~ ~ + & ( ~ - 2 ) ~ ~ + 4 ~ ~ 3 . .  . . (57) 
+&D +4)D(D - l)-&D(D + 2 ) ( 0  - 1)+$3]~3 
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and the coefficients up to the 1/D term in the square bracket vanish. 

5.4.3. C(2,2;2,2;2,2), coefficients. As a more severe test we try the 
C(2,2; 2,2; 2,2), coefficients. The general procedure for obtaining terms inln Z(a) is 
to decompose into all possible cycles as in the king model, and enumerate the terms 
corresponding to each set of cycles. We find for the coefficient of w1w2w3w4w5w6 2 2 2 2 2 2  

~ ( 2 9 2 ;  292; 2, 2),-6[c(1)p14+ 12[~(1);~(2,1,1)eI-3[~(2,1, 1)e12 

-4[C(2,1; 291; 2, 1),C(1)pI+2[C(1),l3-3[C(2, 2; 1 , l ;  1, l)ac(l)pl. 
(60) 

The first group of 4 terms corresponds to combinations of triangles and the last two to 
combinations of quadrilaterals. On substituting in equation (60) we find that the 
coefficients of D4, D3 and D2 vanish, which is often a powerful check. 

From this analysis it is clear that for any bonding the C coefficient for large D is of 
order D" where CT is the maximum number of cycles in the bonding. To ensure 
cancellation in any particular term the canresponding configuration must be decom- 
posable into cycles (a double bond does not munt as a cycle). We noted this property 
empirically in a previous paper (Domb 1972) and have now been able to establish that 
the vertex conditions in the previous section and decomposability into cycles are 
mathematically equivalent (Domb 1976). This result provides a generalization of the 
classic problem of the Konigsberg bridges solved by Euler. 

Of the three methods listed above only the second gives a definite answer in all 
cases. For many configurations the fist method gives a simple and immediate answer, 
and in the few cases of failure the second and third methods can be invoked without 
involving calculations of too great complexity. We hope in this way to be zble to tackle 
non-ladder configurations required for 16 terms of the high temperature expansion of 
the partition function. 

6. Limiting behaviour as &O 

TO complete the picture of the D-vector model from the finite cluster point of view we 
examine the behaviour of the model as D + 0. It was fist indicated by de Gennes 
(1972) that the self-avoidig walk model (see, e.g. Domb 1970) would then result; an 
alternative proof has been given by Bowers and McKerrell(l973). 
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We fist renormalize the interaction so that D + 0, J +  0 but J/D remains finite and 

Finite cluster partition functions 

equal to J*. We then find with reference to equation (45) that 

Hence the only surviving terms in the finite cluster expansion are those with single 
bonds. But we can now readily show that the coefficients of all but the simple polygon 
tend to zero as D-tO. To do this we make use of the method of direct averages 
described in the previous section. Consider any topology G with p points and I lines. 
Using relations analogous to equation (44), and equation (45), we find that 

c(1, 1, 1 , .  1 .  1)G=D1-’4(D) (62) 

where d(D)  is a rational function which remains finite as D -t 0. We thus see that for 
any topology whose cyclomatic number c is greater than 1 the coefficient 
C(1,1,1, . . .1)G tends to zero as D + 0. 

For the susceptibility expansion which involves a single broken bond (Domb 1972) 
the only surviving term is the simple chain. We are thus led very simply and naturally to 
the self-avoiding walk model. 

7. Conclusions 

The major aim of this investigation was to formulate systematic methods of calculating 
fmite cluster partition functions needed for the generation of series expansions for the 
D-vector model. For the majority of topologies (ladder topologies) this can be done in 
a simple automatic manner, and a suitable computer program has been devised by 
D L Hunter and P S English at St  Francis Xavier University, Nova Scotia, Canada. The 
non-ladder topologies are much fewer in number, but require individual handling. 
Three methods have been proposed for calculation in these cases, with the aid of which 
it is hoped that the calculations can be performed without undue labour. 
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